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A model of a magnetic field problem occurring in connection with Josephson junction 
devices is derived, and numerical solutions are obtained. The model is of mathematical 
interest, because the magnetic vector potential satisfies inhomogeneous Helmholtz equations 
in part of the region, i.e., the superconductors, and the Laplace equation elsewhere. More- 
over, the inhomogeneities are the gauge constants for the potential, which are different 
for each superconductor, and their magnitudes are proportional to the currents flowing in 
the superconductors. These constants are directly related to the self and mutual inductances 
of the superconducting elements in the device. The numerical solution is obtained by the 
iterative use of a fast Poisson solver. Chebyshev acceleration is used to reduce the number 
of iterations required to obtain a solution. A typical problem involves solving 100,000 
simultaneous equations, which the algorithm used with this model does in 20 iterations, re- 
quiring three minutes of CPU time on an IBM VM/370/168. Excellent agreement is ob- 
tained between calculated and observed values for the inductances. 

1. INTRODUCTION 

Josephson junction circuits are being built at the IBM Thomas J. Watson Research 
Center for use in high speed computers. An illustration of a prototype device [l] is 
shown in Fig. 1. The shaded areas are insulators, in general SO, while the clear 
regions represent superconductors [3]. The control lines, with current I,, are cut away 
in the drawing, but actually go over the top of the device. The depressed areas are 
where the junctions are located. In the design of such a device, one is interested in the 
distribution of the magnetic fields arising from the currents flowing in the super- 
conductors, and in particular, the inductances, both self and mutual, associated with 
the elements of the device. 

This paper describes a mathematical model of such a device, and the numerical 
solution of the model. The currents which determine the fields and inductances 
flow primarily through those superconducting portions of the device which do not 
comprise the actual junction, since the lengths of the junctions are small compared to 
the overall lengths of the superconductors, (approximately 1:15). Therefore as a 
first approximation, it is reasonable to take a cross section perpendicular to the current 
flow in the device, and to model the device as being two dimensional. 
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FIG. 1. AII example of an interferometric device formed from three Sosephson junctior.s. Clear 
areas marked L are superconductors. Shaded areas are insulators. 

The permeability of the insulating materials is very close to that or vs;cuuzn. Thei-e- 
fore we take as our model a discrete number of superconducting rectangles in a 
vacuum bounded on the bottom by a superconducting ground plane. (However the 
method described in this paper is not limited to rectangular shapes.) 

En the next section, we derive the model consisting of the basic equations which 
apply in the superconductors and the vacuum, coupled with various constraints. In 
the third section, the method of numerical solution is presented. Comparisons of the 
results with measured values and approximate rheories are made in the last section. 
A more detailed report [2] contains an existence and uniqueness proof for the solution. 
and an estimate of the numerical error. An appendix to this report gives the details of 
the scaling used, which results in a convenient form for the equations and yields the 
output in the desired units. Another appendix to this report considers a related 
problem, concentric superconducting annuli, which can be solved analytically. 

2. THEORY 

As discussed in the introduction, we seek to solve a two dimensional problem in 
which the upper half plane is a vacuum with the exception of several rectangular 
superconductors, and where the lower half plane is a superconducting material. Fig. 2 

FIG. 2. A two-dimensional model of Fig. 1 in the region away from the junctions. Two rectanelar 
superconductors surrounded by vacuum are underlain by a superconducting ground plane. 
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is an example of a possible configuration. The y coordinate is chosen to be perpendi- 
cular to the ground plane and directed upward, the x coordinate is directed to the 
right, and the origin lies on the boundary between the two half planes, as shown in 
Fig. 2. For a right handed coordinate system, the z coordinate is directed positively 
out of the page. Electric currents are assumed to flow through the rectangular super- 
conductors, and, to have a return flow through the ground plane. The current density, 
ji , in the ith superconductor will be directed in the z direction and will be a function 
of x and y. From the law of Biot-Savart, the magnetic field will have x and y compo- 
nents only, which will be functions of x and y only. 

Maxwell’s equations apply both in the vacuum and in the superconductors. In 
c.g.s. units, the equations of interest are: 

VxH=-$j 

V*B=O, (2.2) 

where H is the magnetic field, B, the magnetic induction, j, the current density, and c, 
the velocity of light. In both the superconductors and vacuum 

B = H, 

and (2.2) may be replaced by 

V-H=O. (2.3) 

Therefore, from Helmholtz’s theorem, H may be obtained from a vector potential A. 

H=VxA. (2.4) 

Since A has only a z component and is independent of Z, it follows that 

v.A=O. (2.5) 

In the superconductors, L.ondon’s equation 

Vxj=$H (2.6) 

also applies, where h is the London penetration depth, possibly different for different 
superconductors. - - - 

If we introduce dimensionless space and time variables (x, y, t): 

x = x/x; y = y/,/x; s = t/(4lr X/c), (2.7) 
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equations (2.1) and (2.6) reduce to 

and 

VxH=j (.2.8) 

Vxj=-H, (2.9) 

as shown in Ref. 2. This particularly simple form applies only if h is the same for a!1 
superconductors. Equations (2.3) and (2.4) still apply with A defined in terms of the 
new units. Taking the curl of (2.4) and using the vector relation: 

v x (v x A) = -VA + v(v . Aj 

together with (2.5) and (2.8), yields 

y?A = -j, (2.10) 

where both A and j have z components only. A comparison of (2.4) and (2.9) indicates 
that in a superconductor 

j=--At-V& (2.1.1) 

where V+ is the gradient of an arbitrary scalar field. Since both j and A have only a. 
z component and are functions only of .X and JJ, 06 must have the same properties. 
Applying the curl operation to 04, we obtain 

This implies that 04 is a constant which we denote by X. Equation (2.11) is the gauge 
relation between j and A. Substituting (2.11) in (2. IO) yields 

C”A - A = x, (2.12) 

where we now consider the z component of A as a scalar. Equation (2.12) describes the 
behavior of A in a superconductor. In the vacuum where j = 0, (2.10) becomes 

PA = 0. (2.13) 

In problems which arise in practice, different superconductors have different 
penetration depths. Since they are of the order of 0.1 micrometer, we have chosen this 
value for )\ in (2.7). It is therefore necessary to modify (2.11) and (2.12). Tn the ith 
superconductor, one obtains, as shown in the appendix of Ref. [2], 
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(2.15) 

where xi is the penetration depth of the ith superconductor expressed in tenths of a 
micrometer. 

B. Bozzndrrry Conditions 

We will first consider the appropriate boundary conditions in the absence of the 
ground plane. Assume that we have a single superconductor in which a known current 
I flows. Then from (2.8) and Stoke’s formula 

4 H - dl = SJ’ j . dS (2.16). 

where the line integral is taken about a circle with radius R and centered at the central 
point of the superconductor. S is the planar surface contained in the circle. Let I be 
the total current flowing through S. If we assume that R is sufficiently large so that H 
may be assumed independent of azimuth, this leads to 

I = 2rRH + O(R-3). (2.17) 

From (2.4) the vector potential, A, must be 

A = - & In R + O(R-“). 

(Here the remainder is O(R--P) because of the symmetry of the rectangle and the fact 
that the origin is chosen at the center of the rectangle. In the more general case, as 
described in the estimate of numerical error in Ref. [2], O(R-2) would be replaced by 
O(R-I).) If we have n superconductors, the effect on the far field is 

kf = - f $ ln Ri + O(R-z), 
i=l 

(2.19) 

where Ri is calculated from the center of the ith superconductor. In doing a numerical 
calculation, a trade-off must be made in that the far field boundary must be far 
enough away so that (2.19) is a good approximation, without having the problem 
(i.e. domain) become too large. 

The magnetic field is continuous across the boundary between a superconductor 
and the vacuum. This is equivalent to saying that A and its normal and tangential 
derivatives are continuous across the boundary. 

Finally, we consider the effect of the ground plane. As an approximation, we assume 
that the London penetration depth for the ground plane is zero. This means that no 
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field penetrates into the ground plane; there can be no normal component of 
anywhere along the ground plane. In this case the surface of the ground plane may be 
treated as a mirror. Images of the superconductors in the upper half plane are mapped 
into the lower half plane (see Fig. 3), and currents of opposite sign are imagined t@ 
flow in them. This treatment of the ground plane was adopted to limit the grid size. 
A more recent version of the program permits the ground plane to be treated as 
another superconductor with a non-zero penetration depth. The image supercon- 

FIG. 3. The effect of the ground plane is approximated by placing a mirror image of the super- 
conductor in the ground plane. In the image the current, Z, flows in the opposite direction. 

duetors will make additional contributions to the potential A in the upper half plane, 
which are equivalent to that caused by the actual current distribution in the ground 
plane. Equation (2.19) is now replaced by: 

A---f&R” + i + In R, , 
i=l i==l -77 

(2.2cQ 

where the 8; are measured from the center of the image of the ith superconductor. 

C.. Si,orzzjkance of the Constunt it1 Equation (2.11) - F/uxo~~ 

London” has demonstrated that the quantity 

which he catls a fiuxoid is constant in time. Furthermore, in a simply connected super- 
conductor, it is identically equal to zero. Only in a multiply connected region [3], in 
which the line integral can be taken around a hole in the interior of the superconductor 
is it non-zero. The first part of the integral is equivalent to the flux flowing through 
the surface bounded by the loop, and often, when j is small, the fiux and the fluxoid are 
equivalent. 
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Equation (2.21) is in c.g.s. units. It is shown in Ref. 2 that in our units (2.21) 
becomes 

@, = 
I 

(A + hf2j) . dl, (2.22) 

where Ai is defined at the end of Section 2A. Comparison with (2.14) shows that the 
constant A,“& is the integrand of the fluxoid. X is directed in the -7 direction. If a 
closed loop is chosen within a long cylindrical superconducting bar, the integral of 
hi2Xi will equal zero, since A>Xi is a constant, in agreement with London’s prediction 
for a simply connected region. Consider, however, Fig. 4, which shows a long super- 
conducting bar carrying current in the positive direction, with a return flow in the 

, 1 L----------- ____ i i 
L------ZY~~-------~ 

FIG. 4. Extension of Fig. 3 to a three-dimensional case. Current is assumed to flow through a 
long length of the superconductor in the .z direction, and then to return through the image in the 
opposite direction. The effect of the current flow in the end regions is ignored in calculating the 
fluxoid. 

image bar. The image constant, A”, will be the negative of X. Therefore the net fluxoid 
about the hole will be non-zero. h2X can be thought of then as the fluxoid per unit 
length. 

In practical units, the energy required to establish a flux through a circuit, in which 
a current I Aows, is: 

where L, the coefficient of self inductance, is equal to Q/l, by definition. London [3] 
shows that a similar energy term equal to 1/2c @J arises in superconductors. c 
appears here as a consequence of the units. By direct analogy to the flux case, we may 
define a coefficient of self inductance equal to the fluxoid divided by the current. The 
self inductance per unit length is therefore proportional to the constant X. 

In cases involving more than one superconductor, a problem can be solved with 
current flowing in only one superconductor. In this manner, mutual inductances can 
be obtained from the constants in the non-net current carrying superconductors, since 
they are proportional to the fluxoids generated in these superconductors by the current 
flowing in the remaining superconductor. 

D. Statement of the Problem 

The problem to be solved is the following: Find A, the vector potential of the magne- 
tic field, where A satisfies a Helmholtz equation, expression (2.15), in the super- 
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conductors and a Laplace equation, expression (2.13), in the vacuum, given Dirichlet 
conditions, expression (2.20), at the far boundaries, and continuity of A and its 
derivatives across a boundary between superconductor and vacuum. Application of 
expression (2.20) at the ground plane yields A = 0. We derive some auxiliary condi- 
tions involving X which will be useful. These conditions are a result of the continuity 
of A at the superconductor boundaries. In order to obtain a unique solution for A, 
we must know the total current fiowing in each superconductor. If 1, is the tozai 
current flowing in the kth superconductor, then 

the integral of the current density over the area of the kth superconductor. Sub- 
stituting (2.14) in (2.24) yields 

where SI; is the area of the kth superconductor. If we have tz superconductors, we then 
have n auxiliary conditions of the type given in (2.24). 

3. NUMERICAL SOLUTION 

We now approximate (2.13) and (2.15) by difference equations using the standard 
five point difference formula for the L.aplacian operator. Letting i be the index in the x 
direction, j, in the J’ direction, Lils and Ay, the mesh increments in the x and .‘r? direr- 
tions respectively, we obtain 

where K = 0 in vacuum, K -L 1 in the interior of the kth superconductor, K = l/e at 
corner points of a superconductor boundary, and K = ij2 at all other points on the 
boundary of a superconductor. Essentially we are taking an average of the Laplace 
and Helmholtz equations with weights determined by the relative amounts of vacuum 
and superconductor contained in the four grid squares having the point (i., f) as a 
common corner point. This averaging procedure causes the numerical method to be 
consistent with the requirement of continuity of A and of its derivatives across 
boundaries. 

The domain of the problem is chosen to be a large rectangle containing the super- 
conducting regions. Along the boundary of this rectangle the Dirichlet conditions 
(2.19) or (2.20) are used with A replaced by the appropriate A,,j at each mesh point 
on the boundary. 

Finally the side conditions (2.24) are discretized by replacing the integral whjch 
appears there by a numerical approximation of second order accuracy. 
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To solve these equations we utilize a so called fast solver. If Kwere everywhere zero, 
a fast Poisson solver of the type described by Hackney [4] could be used, or if K were 
constant everywhere, a fast Hehnholtz solver could be used. The fact that the X’s 
which occur in the equations for the A’s, depend on the A’s, (cf. (2.24)) suggests 
that an iterative procedure be used. Concus and Golub [5], among others, have used 
fast solvers in iterative procedures to solve problems involving Helmholtz equations 
with continuously varying coefficients. In our model we have piecewise constant 
coefficients. This may explain why contrary to their experience, we found that solving 
equation (3.1) with a fast Poisson solver worked better than using a fast Helmholtz 
solver. 

The iterative procedure is outlined in the flow chart in Fig. 5. (N.B. The program 
actualIy solves for u = --A.) Initial values are chosen everywhere for A, and the x’s 
are set equal to zero. Since the solution is unique, convergence does not depend on the 

INITIALIZE REGION, u" 

SAVESOLUTIONJ" 

1 
1 INSERT RIGHT HAND SIDEtRHS) ] 

1 
V2u”+“2.RHS 

1 p:Q”“+‘~2+(l-e)“” 
1 

ACCELERATE$lNVERGENCE 

+ 

RMSi,j (u"+'-u") 1 

FIG. 5. Flowchart of the iterative procedure programmed to solve for u(x,y) and the gauge 
constants X. 

initial values of A. The number of iterations turned out to be relatively insensitive 
to the choice of initial values of A. We use expression (2.20) everywhere, except near 
the center of the current carrying superconductors, where (2.20) has a logarithmic 
singularlity. Values for the X’s are then calculated from (2.24) using the initial values 
of A. The numerical integration scheme is quite simple. The average of the values of A 
at the four corner points of a grid square is taken. A summation of the averages over 
all grid squares is made, and then multiplied by dx 4~. 
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We are now into the loop. Equations (3.1) are solved with Hackney’s PO?4 
program f6], which he developed at the IBM Thomas J. Watson Research Center. The 
right hand side of (2.24) is formed from the current X values and the previous solution 
for the A’s. In the first iteration, the initial values occupy the storage locations of the 
previous solution. Designating the previous solution by A and the resultant solution of 
(2.24) by A”, we form 

our new solution. The root mean square error (for a!1 grid points) between the new 
and previous solution is obtained. When it falls below a chosen tolerance E, an exit is 
made from the loop. Also values of the currents are obtained from the integral of’, 
as given in (2.14) for comparison with the true values. 

If no exit is made from the loop, the new solution An+l is placed in the storage !oca.- 
tions of the previous solution. New values of the X’s are calculated from (2.24). 
Equations (3.1) are solved with new right hand sides. A new solution Av2fZ is obtained, 
and so on, until the exit criterion is met. To reduce the number of iterations, Chebyshev 
acceleration(as described in Concus and Golub [5]) . . 1s used. Essentially this acceleration 
procedure makes use of the information contained in the solution for the next to iash 
iteration to speed up convergence. The formula is 

CL).? = 2/(,2 - p”) 

6Jnrl = (1 - pQ0,,/4)-1 for II == 2, 3,.... 

and -CL-r is the improved value of the (II + 1)th iteration. p is an upper bound for the 
absolute values of the eigenvalues of the associated matrix. Once the loop is excited: 
the magnetic fields are calculated from A by numerical ditTerentiation, and the current 
densities in the superconductors, from (2.14). 

Considerable underrelaxation is required to render the iterative procedure stable. 
Typical vames of cr in (3.2) range between 0.1 and 0.2. Nevertheless only approximately 
20 iterations are required to obtain a solution of .Ol y: accuracy. 

The program returns magnetic induction values in milleteslas and current densities 
in miiliamperes per square micrometer. 

Solutions were obtained for configurations where the inductance values had been 
measured in the laboratory. The numerical solutions v;ere in agreement with the 
measured values to within the experimental error. Also as a convergence test, a run 
was made for an E of .OOOl s<, which required 34 iterations. The solution obtaimed 
was in agreement with that obtained for an E of .Ol “g. 
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4. DETAILS FOR SAMPLE PROBLEMS 

A main program, unique to each configuration of superconductors, iteratively calls 
the Poisson solver subroutine, POT4, until a solution for the vector potential A is 
obtained (the programs actually work with u = --A). Contour plots are prepared 
for the vector potential A, the current densities j in each superconductor, and/or the 
components (and/or magnitude) of the magnetic field H. 

The algorithm implemented is shown in Fig. 5. The iterative procedure terminates 
(converges) when the root mean square (RMS) of the pointwise difference between 
,Gn+l and ~7~ is less than some prescribed tolerance E. 

The sample problems run used a grid of 512 points in the .x direction and 256 points 

y= 12.8gm 
I 
I 

I 

FIG. 6.1. Geometry and penetration depth for sample problem n, model of one superconductor 
over ground plane. 

6.2 
iI -o.~-m+q ;*, 

c 
=O.i35pl '?PJ 

--b 
OSpm 

0.2p.m 
X~42.8pn FO x=12.8pm 

FIG. 6.2. Geometry and penetration depths for sample problem b, model of two superconductors 
over ground plane. 

6.3 

x=-12 

XfOK2Q4.2 
l~p----j 0.5pm 

0.2/m f 

.W” x=0 x42.8pm 

FIG. 6.3. Geometry and penetration depths for sample problem c, model of three superconductors 
over ground plane. 
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in the 4: direction. This required 4 megabytes of main memory. The mesh widths were 
LIX = Lfq’ = .5. Severe under-relaxation was used with o = .l. Minimum acceieranion 
was attempted: p = .86. The RMS was tested against an E = lo-“. 

For the 5 12 x 256 grid each iteration took about 11 seconds, For the superconduc- 
tor geometries about to be described, convergence required 16 to 18 iterations. The 
contour plots made averaged about 15 seconds per plot. Thus a typical run required 
3 minutes of computation and two minutes of plotter preparation. 

Three sample problems are considered; their geometries and penetration depths are 
given in Figures 6.1, 6.2, and 6.3. The bottom boundary in each case is a ground 
plane for which u == --A = 0. The problems are all run with a current of I milhamp 
applied to just one of the superconductors. All of the vector potential plots (lines of 
constant A) show only the lower half of the computed solution. 

a) One Superconductor Ocer a Ground Plane (Fig. 6.1) 

Fig. 7 is a contour plot of lines of constant vector potential, A. These lines are 
equivalent to magnetic held lines. Since the levels of the contours are uniformly 
chosen, the concentration of the lines of constant A are indicative of the strength or 
weakness of the field in a given area of the plot. 

Because of symmetry only the right half of the region is plotted in Fig. 7. The 
wiggles on the ieft hand side at the center of the superconductors are an artifact of the 
plotting program. The field lines encircle the current souroe in the superconductor as 
expected. 

W. Cheng (personal communication) has derived approximate formulas with which 
we may compare some of our results for the case of one superconductor over a ground 
plane. The formulas are for a superconductor whose x dimension (width) is greater 
than its distance above a second superconducting ground plane of thickness t. The 
normal component of the magnetic field along the vacuum-superconductor boundary 
is assumed to be zero. If we let t--t co and the penetration depth in the ground plane 
equal zero, the inductance for the model of Fig. (6.1) is .02802 picohenries/micro- 
meter. Our result of .02762 picohenries/micrometer differs from this by - L .44 y/g. The 
communication also contains an expression for the x component of the magnetic 
field at the midpoint of the bottom boundary line of the superconductor. This expres- 
sion yields .08361 milliteslas. Our model gives .076 milliteslas (we only printed three 
decimal digitsj which differes by -9.10 o$ The reason for such a large discrepancy is 
probably that our model has only four mesh intervals between the superconductor 
and the ground plane. 

TABLE 1 

L 

H 

Formula Model 

.026496 .026X6 

.08407 .084 

% Difference 

.264 ;< 

-.083 y< 



228 

60 

50 

40 

E 
2 
5 

30 

20 

10 

ALSOP ET AL. 

0 20 40 60 80 100 120 140 

FIG. 7. Contour lines of the vector potential A for sample problem a, one superconductor over 
a ground plane. These lines are equivalent to magnetic field lines whose concentration is indicative 
of field strength. 
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In a comparable model in which the distance of ?he superconductor above rhe 
ground plane was .lg micrometers and the vertical mesh width was .M, the results 
from the approximate formulas and our model are given in Table 1. The agreement 
here for the H is excellent, and we note that there are nine mesh intervals between 
the superconductor and the ground plane. 

b) Two Superconcluctors Over a Ground Plane (Fig. 6.2) 

Fig. 8.1 is the field plot when current is applied to the top superconductor (XL); 
Fig. 8.2 is the corresponding plot for current in the bottom superconductor (§C2). 
Because of symmetry only the right half of the region is shown. As in the one super- 
conductor case, the field lines encircle the current source, 

The array of constants X computed is 

-.4577 -.1049j 
x = L.1366 -.1513i’ 

where Xij is the X computed in superconductor i with current applied to super- 
conductor j. The inductance array which results is 

L = [ 
.1136 .025374 
.024914 .02655 I = 

The mutual inductances between the two superconductors, I.,, and L,, , should be 
equal. Our calculated values differ by .06X yi, which is within the expected numerical 
error. 

It is interesting to observe the dynamics of the calculation. For the case with current 
in the top superconductor, 18 iterations were required for convergence. Table 2 
shows the computed currents, I, and corresponding constants, X, as the iterative 
procedure was just before convergence. A current of 47~ = 12.56637061, which 
corresponds to 1 milliamp, for the scaling used, is applied to SC1 and a current of 0 

TABLE II 

(Z, = 12.56637061) (Zz = 0) 

Current computed Current computed 
Iteration in SCI Xl in SC2 x2 RMS 

13 12.25196870 - .45756323 -.0261&77& --.13G6Oo&S7 .919&T ,q 10-z 

14 12.72144828 -.45799989 .02305350 -.13&X628 ‘5709i x lo-” 

15 12.50505022 -.45778451 .01266092 ---.I3661334 .36?61 x 1OF 

16 12.65669819 -.45786968 .01985031 -.13659526 .23335 x IO-” 

i7 12.53769467 - .45774422 .0028463 -.13656690 -14749 x IO-3 

1x -94750 x IQ-- 
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FIG. S.l. Contour lines of the vector potential A for sample problem b, two superconductors 
over a ground plane with current applied in the fop super’conductor. These lines are equivalent to 
magnetic field lines whose concentration is indicative of field strength. 



SUPERCONDUCTOR FIELD PROBLEM 23’1 

\., ““,,, \ ‘I 

: -115 \\ \, \ \ i 
a0 ‘\ \ \ \ 

\\ ‘1 
\ 
‘. 

..~ 

--“‘.-.\ \ ‘.‘\\\ it1 

\ ’ : 
30 

“'\ \ \ \ 

20 

FKG. S,2. Contour lines of the vector potential 4 for sampie problem 6, two superconductors 
over a ground plane with cwrerzt applied in the bottom superconductor. These lines are equivalent to 
magnetic field lines whose concentration is indicative of field strength. 
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FIG. 9.1. Contour lines of the vector potential .4 for sample problem c, three superconductors 
over a ground plane with current applied in the fop left superconductor. These lines are equivalent to 
magnetic field lines whose concentration is indicative of field strength. 
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FIG. 9.2. Contour lines of the vector potential A for sample problem c, three superconductors 
over a ground plane with current applied in the top ri,ht mpercorzductor-. These lines are equivalent to 
magnetic field Iines whose concentration is indicative of field strength. 
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FIG. 9.3. Contour lines of the vector potential A for sample problem c, three superconductors 
over a ground plane with cumvzt upplied in the bottom superconductor. These lines are equivalent to 
magnetic field lines whose concentration is indicative of field strength. 
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FIG. 10.1 Contour lines of the current densify in the fop left superconductor for sample problem c, 
three superconductors over a ground plane with current applied in the fop leff superconducfoor. 
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FIG. 10.2. Contour iiws of the current dens@ in the top right supercondactor for sample problem 
c, three superconductors over a ground plane with cursem applied in the top lefr srrperconducto~. 
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FIG. 10.3. Contour lines of the currerlt density in the bottom superconductor for sample problem 
c, three superconductors over a ground plane with current applied in the top Iejt scrperconducfor. 
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to SC2. The last values were computed after the 17th iteration, and were not recom- 
puted after convergence occurred in the 18th iteration. Both currents are clearly 
converging to the applied values, and could be made closer to the applied values if 
more iterations were made (by using a smaller E). 

c) Tizree Superconductors Over a Group Plane (Fig. 6.3) 

Figures 9.1, 9.2, and 9.3 are the field plots when current is applied to the upper left 
superconductor (SCl), the upper right superconductor (SC3), and the bottom super- 
conductor (SC2), respectively. The entire solutions are plotted (lower halves), since 
for current in either SC1 or SC3, the solution is not symmetric about the line x = 0. 
(It is symmetric with current in SC2, but we plot the whole region anyway.) 

The solutions for currents in SC1 and SC3 are mirror images of each other, as we 
would expect. Note that here again the field lines encircle the current source. 

The inductance array computed is: 

.2368 .024617 .03104 
L = .024567 .02759 .024567 1 . 

.03104 .024617 .2368 

L,, and L,, , which should be equal, ditfer by .203 76 as do Le3 and L,, . L,, = Lsl and 
L1, = L,, , as would be expected from symmetry. 

For current in SCI, Figures 10.1, 10.0, and 10.3 give contour plots of the current 
densities in SCl, SC3, and SC2. The current density contours are identical in shape 
to the field lines (lines of constant A) in the superconductors, since they are related 
by the linear transformation given in equation (2.11). Note that the current density in 
SC1 is everywhere positive, while in SC2 and SC3, it is both positive and negative 
(so that the total currents equal zero). 
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